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Metabolic fingerprinting of biofluids like urine is a useful technique for detecting differences between individuals. With this approach, it
possible to classify samples according to their biological relevance. In Part 1 of this work a method for the comprehensive screening of
was described [H. Idborg, L. Zamani, P.-O. Edlund, I. Schuppe-Koistinen, S.P. Jacobsson, Part 1, J. Chromatogr. B 828 (2005) 9]
different liquid chromatography (LC) column set-ups and detection by electrospray ionization mass spectrometry (ESI-MS). Data pretr
the resulting data described in [H. Idborg, L. Zamani, P.-O. Edlund, I. Schuppe-Koistinen, S.P. Jacobsson, Part 1, J. Chromatogr. B 82
is needed to reduce the complexity of the data and to obtain useful metabolic fingerprints. Three different approaches, i.e., reduced dim
(RD), MarkerLynxTM, and MS ResolverTM, were compared for the extraction of information. The pretreated data were then subjected to mu
data analysis by partial least squares discriminant analysis (PLS-DA) for classification. By combining two different chromatographic p
and data analysis, the detection of metabolites was enhanced as well as the finding of metabolic fingerprints that govern classification
potential biomarkers or xenobiotic metabolites were detected in the fraction containing highly polar compounds that are normally disca
using reversed-phase liquid chromatography.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Metabolic fingerprinting by LC/MS, e.g., as described in Part
1 of this work, generates a wealth of data[1]. The data structure
is a matrix for each sample, i.e., retention time in one direction
and mass spectra in the other direction (Fig. 1). There are thou-
sands of data entries per sample, complicated by a vast amount
of noise, artifacts, and redundancy in the data. Chemometric
methods are therefore needed to reduce the large number of
variables and obtain information-rich fingerprints suitable for
pattern recognition and classification.

DOI of related article:10.1016/j.jchromb.2005.07.031.
∗ Corresponding author. Fax: +46 8 156391.

E-mail address: sven.jacobsson@anchem.su.se (S.P. Jacobsson).

As it is difficult to visualize and handle two-way data, fu
scan LC/MS data are often reported as total ion chromatog
(TICs), base peak intensity (BPI) chromatograms, or re
structed ion chromatograms (RICs), i.e., the dimensionality
been reduced. With this approach, resolution and hence
mation will be lost. In addition to the problem of overlapp
peaks, there are also problems of shifts in retention time
mass number, resulting in instability of sample fingerprints. T
and similar approaches are one way of handling LC/MS
although they will not, for instance, reduce the amount of n
or get rid of artifacts like electronic spikes. Furthermore, T
might not give enough information to be used as a fingerprin
so alternative approaches might be needed. It would, of co
be attractive to use the information in the mass axes, i.e., th
data matrix with allm/z values at all time points. Data-analy
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Fig. 1. The structure of LC/MS data is shown. A matrix is obtained for each
sample.

methods that can handle three-way data, e.g., PARAFAC[2] and
Tucker[3], were not used in this work as they are very demand-
ing in terms of computer power and are thus not suitable for the
direct data analysis of non-pretreated data.

In this second part of the work, three different meth-
ods/software packages have been used for data pretreatment:

• Reduction of dimensionality, i.e., reducing dimensionality by
collapsing the mass axis (TICs) or by collapsing the time axis
(Summ/z).

• MarkerLynxTM, i.e., a peak detection algorithm, where each
mass number is analyzed separately in a search for peaks[4].
The area of these peaks will be given an identity ofm/z and
retention time and used as a fingerprint.

• MS ResolverTM, i.e., two-way analysis by multivariate curve
resolution (MCR) techniques[5]. Those are techniques that
can recover response profiles, e.g., spectra, time profiles, o
elution profiles, of components in an unresolved mixture. No
prior information is needed about the composition of the mix-
ture.

The results were compared in regard to their ability to give
appropriate data for classifying urine samples using PCA[6]
or PLS[7] discriminant analysis (PLS-DA) and differ between
dosed and control rats. The question of interpretation and th
ability to detect putative biomarkers/xenobiotic metabolites was
a
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2.2. Sample preparation and LC/ESI-MS analysis

Solid-phase extraction was used for sample preparation, as
described in Part 1 of this work[1]. The wash fraction was
injected onto a ZIC®-HILIC column and the eluate onto a C18
column. Both hydrophilic interaction liquid chromatography
(HILIC) and reversed-phase liquid chromatography (RP-LC)
have previously been described in[1].

An electrospray ionization (ESI) interface was used and the
mass spectrometry (MS) detection was performed in full scan
mode, alternating between positive and negative ion mode. Data
obtained in profile mode fromm/z 50 to 600 were recorded at a
speed of 1 s/scan, as described in[1].

2.3. Data pretreatment

The data obtained are a matrix for each sample, i.e., retention
time in one direction and mass spectra in the other direction.
Each data file is a matrix of 551m/z values for each scan (Fig. 1).

2.3.1. Reduction of dimensionality (RD)
LC/MS data obtained by Masslynx (Waters, Mass., USA)

were converted to cdf files using the program DataBridge
(Waters, Mass., USA). The data (.cdf) was then imported to
MATLAB 6.5 [9]. The three-dimensional structure of each sam-
ple was then collapsed in the same way as when reporting total
i ities
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. Experimental

The workflow of the analysis is summarized in Part 1 of
ork [1].

.1. Urine samples

Urine from eleven male Wistar rats dosed with vehicle c
rol (rats #1–5) or 130 mg of experimental drug X/kg/day (
6–11) was collected. It was collected on one occasion pr
osing and on day 14 of the study. In a previous paper[8] a more
etailed description of the study design is given, although
ats were dosed with different compounds.
r

e

on current (TIC) chromatograms, i.e., summing the intens
f all mass numbers at each retention time. Each sample i
vector that can be used as the sample pattern (fingerprin
With this approach, problems of retention time shifts betw

amples might occur. These may be reduced by bucketing[10],
hough at the expense of additional loss of information. In
ork bucketing was not performed on this data; howeve
ll samples were analyzed on the same day, the retention
hifts are not that crucial, although larger retention shifts w
bserved when using HILIC compared to RP-LC. If nee

here are many methods available for peak alignment[11].
A second approach to reducing dimensionality of d

nvolves collapsing the data in the other direction, i.e., the
xis. The intensities for onem/z value over time are summ
Summ/z) and a row for each sample is obtained with inte
ies for each mass number. Our method differs from the me
roposed by Bylund et al.[12] since it sums each mass chan
hile Bylund’s method uses the maximum for eachm/z channe
etected.

With this approach, the problems of retention time shifts
isappear. This is similar to direct infusion except for the v

mportant fact that the sample matrix effects are reduced, e.g
uppression effects. The difficulty lies in handling the probl
f shifts in the mass axis. One straightforward and very sim
pproach to bucketing is to define anm/z axis in the same rang
s the scan range (50–600) and divide it into segments, i
ase segments of 0.1m/z. The intensities of eachm/z value are
hen distributed to the appropriate segment.

By using these methods essential information may be
lthough the fingerprints obtained might be sufficient. This
ifice might also be needed to enable information on put
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biomarkers to be obtained. If a putative marker is detected, it is
possible to go back to the raw data and obtain reconstructed ion
chromatograms for that particular ion. Thism/z might then give
rise to several peaks at different retention times that need to be
evaluated, although this is much more feasible in this reduced
data set.

2.3.2. MarkerLynxTM

MarkerLynxTM Application Manager (version 1.0) is a soft-
ware package from Waters (Mass., USA) for peak detection[4].
It uses ApexTrackTM peak detection to integrate peaks in LC/MS
data, the identities of the peak areas being reported as retention
time (RT) andm/z. Following peak detection, the peaks from
different samples are aligned so that the same peaks (RT,m/z),
i.e., most probably the same compound, are found in the same
row for all samples. The retention times are allowed to differ by
±0.2 min and them/z values by±0.5 Thomson. The detected
peaks were then exported to MATLAB v6.5 and processed as
described in 2.4. Data obtained in negative mode resulted in 1105
peaks and in positive mode 844 peaks using HILIC. When using
RP-LC, 226 peaks in negative mode and 297 peaks in positive
mode were obtained.

If one compound is fragmented, the compound is reported
as two different compounds, i.e., compound A as (RT,m/zA)
and compound B as (RT,m/zB). However, this will not lead
to problems for the classification, although it might make the
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Data obtained in negative mode resulted in 55 peaks and in
positive mode 56 peaks using HILIC, and 45 from negative data
and 62 peaks from positive data using RP-LC.

By using the MSResolverTM approach, the information in
both them/z direction and the retention time direction will be
taken into consideration. In addition, problems of retention time
shifts will be taken into account. Although this is an iterative
method and there is no unique solution, the results are good
enough for some pattern recognition problems. However, there
are probably a lot of peaks that will not be resolved. In addition,
the resolution of each sample is quite time-consuming (approx-
imately 5 min per sample), although it is much faster than direct
methods such as HELP[15]. If high-resolution data are to be
analyzed, this method is not an option, as the calculation time
will increase dramatically.

2.4. Classification

The data (obtained as described in the Section2.3, data
pretreatment) were further processed using Matlab version
6.5. To prevent the largest peak from excessive influence on
to the model, different scalings were evaluated. Four differ-
ent processing methods were evaluated, i.e., mean centering,
log10 transform + mean centering, fourth root + mean centering,
or scaling of the matrix to mean zero (mean centering) and unit
variance. When only mean centering was used the largest peak
h on the
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esults harder to interpret. The major advantage of using
ethod is that the software is easy to use and is very fast,

or calculations of high-resolution data.

.3.3. MS ResolverTM

Multivariate curve resolution (MCR) techniques are te
iques that can recover response profiles, e.g., spectra
rofiles, or elution profiles, of components in an unresolved

ure. No prior information is needed about the compositio
he mixture.

MS ResolverTM (Pattern Recognition Systems, Bergen, N
ay) is a software package based on theGentle algorithm[5,13]

or multivariate curve resolution, which mathematically reso
he data into peaks. This method is an iterative approa
olving the equationX = CST + E, whereX is the data matri
btained for one sample,C the true chromatographic profilesS

he spectra for all components, andE is the residuals.s1 is then
he spectrum for the first peak, and if no fragmentation oc
his vector will have numbers close to zero at all mass num
m/z 50–600) except for onem/z, which will be 1, correspondin
ost probably to the [M + H]+ ion of that peak.c1 will con-

ain information about the concentration at each retention
hen data from each sample have been resolved into pea

eaks are aligned using ReOrderTM (Pattern Recognition Sy
ems, Bergen, Norway). ReOrderTM compares peaks betwe
amples within a certain time interval, in this case±30 s. Peak
re aligned so that if their spectra are similar (comparing
even most intense fragments) within the current time i
al, they are said to be the same compound. This metho
een used in previous work and is also briefly described

8,14].
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ad the largest variance and thereby the largest influence
odel. For the last scaling method all peaks were given e

mportance in the model and the two other methods gene
ntermediate scaling properties.

The data were analyzed using principal component ana
6] to study data patterns. PLS-DA was then used for cla
ation [7]. The classification was evaluated using measu
lass separation (MCS)[16], which takes account of both t
istribution within each class and the minimum Mahalan
istance between the two classes, and a defined class bou
n MCS > 1 means that the class boundary is >1 standard
tion from the nearest class center. MCS > 1.96 means th
lasses are fully separated with a confidence interval of
ssuming that the population is infinite.

.4.1. Data fusion
Data obtained from HILIC and RP-LC, respectively and

reated using MS ResolverTM were concatenated to yield a larg
atrix of 11 samples× 218 variables (peaks 1–45 from RP-
egative mode, 46–107 from RP-LC positive mode, 108–

rom HILIC negative mode, and 164–218 from HILIC posit
ode). The new matrix was log10 transformed and PLS-DA wa
erformed. Concatenated data from MarkerLynx were also

ed.
Hierarchical modeling was used as a second approach t

usion[17]: a model was obtained for each of the four data
.e. RP-LC positive, RP-LC negative, HILIC positive and HIL
egative, and these were nominated the lower level PLS
ls. Scores vectors from these models, based on the appro
umber of PLS components, were then used to obtain a
LS model (higher level PLS). The number of PLS compon
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in lower level PLS was based on minimum root mean square
error of prediction (RMSEP) and in higher level PLS the PLS
components numbered 2.

Two rats, one from the control group and one dosed, were
used as a test set to perform a brief evaluation of the models.
However, this is not discussed further as the scope of this work
was not to obtain predictive models but only to illustrate the
advantages when using two different chromatographic set-ups.

The combination of different pretreatments and modes of data
analysis gives a large number of different approaches that can be
examined. Thus, in this study on the basis of experience and the
literature, in the authors’ best judgment, only the most obvious
ones were examined. Although more fruitful approaches might,
of course, exist, the aim was to demonstrate the improvements in
results that could be achieved by multivariate data analysis. Fur-
thermore, the main purpose was to show that additional analysis
of the SPE wash fraction on a ZIC®-HILIC column improves
the metabolic fingerprints.

3. Results and discussion

In Part 1 of this work, it was shown that by using a ZIC®-
HILIC column to analyze highly polar compounds and a C18
column to analyze less polar compounds in urine, additional
metabolites could be detected. In order to increase still fur-
ther the number of reported metabolites and obtain sufficient
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lute loadings corresponds to a retention time of 7.2 min. Spectra
around this time were obtained and RICs for selected ions were
studied, although it is difficult to suggest a putative biomarker.
In addition to the problems of interpretation, there are also prob-
lems of shifts in retention time. As described in[1], the retention
time shifts were larger when using a ZIC®-HILIC column than
when using a C18 column, 0.2 min compared to 0.02 min. This
indicates the need for proper peak alignment methods[11].

Instead of summing the intensities at allm/z values to obtain
a TIC, the summation can be made in the other direction, i.e.,
summing the intensities of a particularm/z value at all time
points. There are some difficulties in how to define the axis
as them/z values are float numbers, which results in that the
axes between different samples cannot be compared. In addition,
shifts in them/z direction occur, although these are not as severe
as for retention times. Different ways of defining them/z-axis
generated as profile data are undergoing evaluation, but here a
simple and straightforward approach has been used, as described
in Section2.3.1. The scores plots from PLS-DA of this data
also showed good separation between the two classes (Table 1,
Fig. 2). Due to the shift in mass number of several variables,
i.e., mass numbers, monitoring the same compound, this results
in very complex data. This illustrates the difficulties with the
fluctuations in them/z direction and calls for methods ofm/z
standardization or more intelligent bucketing.

The classification of dosed and control samples based on
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etabolic fingerprints, three different procedures for data
reatment were studied. These were compared in order to
uce information-rich fingerprints suitable for the classifica
f dosed and control samples.

A straightforward method is to use the TICs as metabolic
erprints. In a scores plot obtained from PLS-DA of TICs,
amples were assigned to two groups (Table 1). In this simple
ase where the rats had been dosed for 14 days, it was
le to classify dosed and control samples (Fig. 2). However, it is
ifficult to interpret the loadings plot if the aim is to identify pu

ive biomarkers or xenobiotic metabolites. Variables with h
bsolute loadings in principal component 1 were studied as
orrespond to variables that increased or decreased in res
osed or control samples. One of the variables with high a

able 1
he quality of metabolic fingerprints obtained using different pretreatmen

Reduced dimensionality

TIC Su

umber of variablesa 857 55
CA (MCS)b 0.9 0.9
LS-DA (MCS)c 2 3
CA (ExpV)d 72% 62
LS-DA (ExpV)e X: 69%,Y: 78% X:

ata obtained using ZIC®-HILIC in negative mode were used, together with
amples were used to build the model. The complexity of loadings was re
a Number of variables corresponds to retention time, mass number, ret
b The measure of class separation (MCS) obtained using PCA.
c The measure of class separation (MCS) obtained using PLS-DA.
d The explained variance in X by two principal components.
e The explained variance in X and Y using two PLS components.
-
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ata from MarkerLynxTM and MS ResolverTM, respectively wa
lso successful (Table 1, Fig. 2), although with these metho

he results were easier to interpret when putative bioma
nd/or xenobiotic metabolites were considered. In both c

he variables correspond to a certain peak and both method
e used to solve chromatographic coelution problems. As
e seen inTable 1, the complexity of the model, i.e., the num
f variables, decreases using these methods. The ques
hether or not important information is removed by preven
iomarkers from being detected.

When comparing the different data pretreatment method
bility to classify the two groups using PLS-DA is similar. T
ifferences in classification when using different pretreatm
ethods are shown inTable 1and in Fig. 2. PLS-DA might

thods was evaluated in regard to their power of classification

MarkerLynxTM MSResolverTM

1105 55
1 0.07
17 5
30% 42%

Y: 89% X: 27%,Y: 99% X: 34%,Y: 99%

nsformation prior to multivariate data analysis, i.e., PCA or PLS-DA. All el
d as number of variables.

n time and mass number, or retention time and spectrum.
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Fig. 2. Data from HILIC in negative mode was used and scores plots from the four different pretreatment methods are shown: upper plots were obtained using PLS
on data pretreated by reduced dimensionality, TICs to the left (A) with a MCS of 1.8 and Summ/z to the right (B) with a MCS of 2.6. The lower left plot (C) was
obtained by PLS on MarkerlynxTM data (MCS = 16.6) and the lower right (D) PLS on MS ResolverTM data (MCS = 5.3). Control samples (non-filled squares) and
dosed samples (filled rhombs) were well separated in all cases with plot A (TICs) as the only exception.

overestimate the classification power (poor predictions), but is
very useful in this case as the aim is to find metabolites that
vary in accordance with the two groups. When comparing the
measure of class separation, the separation was increased when
using data from both ZIC®-HILIC and RP-LC data (Table 2).
To illustrate what a measure of class separation (MCS) of six
means, a scores plot is shown inFig. 3. The best MCS was
obtained when using MarkerlynxTM as a pretreatment method
and data from RP-LC positive, RP-LC negative, HILIC positive
and HILIC negative were concatenated (Table 2). However, all
results reported inTable 2showed sufficient class separation.

The difficulty in the interpretation of loading plots also varies
when using different pretreatment methods, as mentioned ear-
lier. The reasons were primarily the difference in number of

Table 2
Comparison of different PLS-DA models based on separate models (C18 or
ZIC®-HILIC data and positive or negative ions) and a model based on concate-
nated data and finally a model obtained using hierarchical modelling

MCSa (PLS-DA) MarkerLynxTM MSResolverTM

C18 neg 45 7
C18 pos 36 6
ZIC®-HILIC neg 20 5
ZIC®-HILIC pos 13 5
Concatenate 57 12
Hierarchical modelling 40 27

A est s
M d.

variables generated from the various pretreatments, and the
nature of the variables, thus loading displayed. For all four meth-
ods, each variable in the loading plot corresponds to a metabolite
in some way: the total ion intensity at a particular retention
time (TICs), the intensity of a particularm/z value over time
(Sum m/z), the area for a peak at a particular retention time

Fig. 3. The above scores plot is obtained from PLS of data obtained using RP-
L TM ed
o ure of
c trol rat)
i

ll models were based on nine samples as two rats were used as the t
easures of class separation for dosed and control samples are reporte
a The measure of class separation (MCS) obtained using PLS-DA.
et.
C in positive mode and MS Resolver for pretreatment. The model is bas
n four control samples (X) and five dosed samples (O) and the meas
lass separation was 6. In addition, the test set (one dosed and one con

s projected onto this plot and marked with circles.
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Table 3
Variables with high absolute loadings in PLS component 1 obtained using data
from RP-LC and HILIC in both positive and negative ion mode are reported

Putative biomarkersa Rankb

RP-LC (±) + HILIC (±)c

Var 48, RT = 3.4 min, 76m/z 1 (C18 +)
Var 79, RT = 9.9 min, 477m/z 2 (C18 +)
Var 130, RT = 10.7 min, 159m/z 3 (ZIC®-HILIC −)
Var 184, RT = 10.8 min, 159m/z 4 (ZIC®-HILIC +)
Var 168, RT = 3.8 min, 188m/z 5 (ZIC®-HILIC +)
Var 91, RT = 11.4 min, 488m/z 6 (C18 +)
Var 93, RT = 11.7 min, 424m/z 7 (C18 +)
Var 121, RT = 6.8 min, 166m/z 8 (ZIC®-HILIC −)
Var 175, RT = 5.8 min, 261m/z 9 (ZIC®-HILIC +)
Var 86, RT = 10.5 min, 170m/z 10 (C18 +)

In both cases MS ResolverTM and log10 transformed data were used. Additional
putative biomarkers were detected using the combined method.

a Putative biomarkers are reported as retention time (RT) andm/z value.
b The variable with the highest absolute loading in PLS component 1 is ranked

number 1. The LC/MS procedure used to obtain this peak, i.e., variable, is shown
in parenthesis.

c Results from PLS-DA on concatenated data where variable nos. 1–45 are
from C18 negative mode, 46–107 from C18 positive mode, 108–163 from ZIC®-
HILIC negative mode, and 164–218 from ZIC®-HILIC positive mode.

andm/z value (MarkerLynxTM) or the peak area for a peak at a
particular retention time with a particular mass spectrum (MS
ResolverTM).

3.1. Putative biomarkers

By using the proposed method, additional putative biomark-
ers can be detected compared to when only using RP-LC. In
Table 3, the putative biomarkers found by using both RP-LC and
HILIC (concatenated data) are reported. Reconstructed ion chro
matograms (RICs) of the two highest ranked putative biomarker
found using ZIC®-HILIC are shown inFig. 4. The results from
the concatenated data using MarkerLynx for pretreatment are no
shown as the ten highest ranked variables were found to orig

F rs are
s
h g
H ained
i

inate from the same compound. Of course, more of the highly
ranked variables could be studied.

In a parallel study, rats were dosed with citalopram[8] instead
of, as in this case, substance X. Both substances were found to
induce phospholipidosis[18,19], and by studying data from both
compounds it might be possible to find putative biomarkers for
phospholipidosis without running the risk of assigning xenobi-
otic metabolites as putative biomarkers. Naturally, the markers
need to be identified to confirm that they are not monitoring a
different phenomenon due to the dosage instead of phospholipi-
dosis.

4. Conclusions

The classification of samples for diagnosis of a particular
disease is based on suitable metabolic fingerprints. It is there-
fore important to obtain relevant data, i.e., fingerprints reflecting
the discrimination. In Part 1 of this work, data were obtained
by LC/MS using two chromatographic systems (RP-LC and
HILIC). However, just as important as collecting suitable data
is having the right tools to extract the information from the data
and transform the data into useful fingerprints.

The metabolic fingerprints were improved by using data from
both ZIC®-HILIC and RP-LC as the separation of dosed and
control samples increased. It was shown that MarkerLynxTM

a TM ods
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ig. 4. Reconstructed ion chromatograms (RICs) from potential biomarke
hown to illustrate the chromatography of the ZIC®-HILIC column. The third
ighest ranked variable from the concatenated data (Table 3) was obtained usin
ILIC and negative ion mode (upper RIC), while the fourth highest was obt

n positive mode using the same ZIC®-HILIC column (lower RIC).
-
s

t
-

nd MSResolver were two good data pretreatment meth
hat gave interpretable results. Peaks at a particular rete
ime and mass number were suggested as putative bioma
lthough further investigations are needed to assign them

ogical significance.
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